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Abstract

How does technology usage affect earnings growth and earnings inequality over the

life-cycle? I construct a novel index to identify technology usage at the individual level

using occupations as the proxy, and document technology usage patterns over the life-

cycle. My reduced-form estimate suggests that technology usage accounts for one-third

of the growth in life-cycle inequality. I then develop a life-cycle model with a college de-

cision, technology choices, and human capital investments to quantify the relative impor-

tance of technology. The model features rich interactions between technology and human

capital such that workers with high human capital are more likely to work with advanced

technologies and vice versa. This reinforcement mechanism between human capital and

technology usage amplifies earnings inequality and growth over the life-cycle. I find that

technology usage contributes 31% of the growth in mean earnings and 46% of the growth

in life-cycle inequality. I also evaluate policy implications of non-linear taxation on la-

bor earnings. When tax progressivity on labor earnings is changed from US to European

levels, the college attainment rate drops by 7 percentage points, and the growth in mean

earnings decreases by 23%. However, the effect on life-cycle inequality is relatively small

compared to mean earnings.
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1 Introduction

There is a large body of literature that studies the effects of information technology

(IT) on labor market outcomes, like inequality (Burstein et al. (2019)) and employment

(Acemoglu and Restrepo (2020)). However, very few papers have explored this question

from the life-cycle perspective.1 One important margin that arises from the life-cycle

perspective is that workers at different life stages could react to the same technological

change differently. For instance, when a new technology is developed, young workers

would like to exert the effort to learn it while old workers might stick to the old technol-

ogy as the cost of learning is relatively high. In this paper, I will address two questions:

(1) what determines technology usage behavior over the life-cycle, and (2) how does

technology usage affect earnings over the life-cycle?

The empirical challenge is to quantify technology usage at the individual level.

To overcome this obstacle, I construct an index distance to the frontier to approxi-

mate information technology usage using occupations as proxy following Gallipoli and

Makridis (2018). This index, which is based on the importance of IT-related knowl-

edge, tasks, and skills, measures how far the technology used in one specific occupation

is behind the most IT-intensive technology (frontier technology). This index can be in-

terpreted as the relative position in the technology distribution as the frontier technology

moves forward.

I first present empirical evidence to show a strong positive relationship between

technology usage and earnings. I include the technology index in an otherwise standard

Mincer regression and the estimated coefficient on the technology index is positive and

statistically significant. In particular, the earnings difference between workers in the

75th percentile of the technology index and the workers in the 25th percentile is 19%

after controlling for observables. This correlation even becomes stronger at the occupa-

1Hudomiet and Willis (2021) studies the effect of computerization on near retirement workers.
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tion level. Furthermore, I find that the observed variation in technology usage accounts

for 38% of the growth in life-cycle earnings inequality.

This reduced-form analysis might underestimate the impact of technology because

it fails to capture rich interactions between technology usage and human capital. The

reason is that I document a strong correlation between technology usage and education:

the share of college workers increases in the level of technology. Moreover, there is a

considerable gap in technology level between college workers and non-college workers

over the life-cycle. These facts suggest that technology choices and human capital in-

vestments could be jointly determined even from the beginning of the life-cycle. There-

fore technology could generate effects on earnings through the interplay with human

capital, which cannot be directly measured by the reduced-form analysis.

To thoroughly quantify the contribution of technology usage on earnings, I develop

a life-cycle model with a college decision, technology choices, and human capital in-

vestments. Individuals are heterogeneous in initial human capital and the cost of college

education which determine their college decisions. College workers accumulate addi-

tional human capital at the college stage with the cost of forgoing four years of earnings.

During the working stage, individuals maximize utility by choosing which technology

to work with and making human capital investments. The model then is parameter-

ized to match life-cycle profiles of technology usage and earnings as well as the college

attainment rate.

The novelty of the model is to allow for rich interactions between technology and

human capital, which are summarized in three mechanisms. The first mechanism is de-

noted direct channel, in which I assume the earnings function is the product of human

capital and technology level. This assumption explicitly leads to the complementarity

between these two terms. The second one is the switching channel where technology

switching comes at a cost of loss in human capital. This assumption is built on Kam-

bourov and Manovskii (2009a) where they find human capital is occupation-specific and
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partially transferable. Workers can only carry a fraction of human capital when switch-

ing to advanced technologies, and the loss of human capital depends on the distance

between two technologies.

The last channel is the catch-up channel. Since the entire technology distribution

is moving forward over time, one needs to learn new knowledge to stay updated with

the current technology. I model this cost of learning as the catch-up cost, which is

increasing with technology level and decreasing with human capital. This mechanism

is in the spirit of Galor and Moav (2000) where the time required for learning the new

technology diminishes with the level of ability. All three mechanisms will be shown to

be important in matching technology usage patterns from the data.

Findings I find that technology usage contributes 31% of the growth in mean earnings

and 46% of the growth in variance of log earnings from age 23 to 60. Specifically, the

growth in mean earnings drops by 26 percentage points and the growth in life-cycle

inequality drops by 5.6 log points after removing technology choice from the model.

That is, the model boils down to a risky human capital model.

My model provides two key insights about technology usage. First, the increasing

earnings inequality over the life-cycle is largely driven by the interaction between tech-

nology and human capital through a reinforcement mechanism. In particular, technol-

ogy complements human capital through the direct channel. Thus, workers in advanced

technologies have more incentives to invest in human capital. Meanwhile, the catch-up

channel lowers the barrier of staying with advanced technology for people with high hu-

man capital so they are more likely to upgrade technology. To sum up, the model allows

for a positive feedback loop between technology and human capital which amplifies

earnings inequality over the life-cycle.

I conduct counterfactual experiments to quantify this reinforcement mechanism and

its effects on life-cycle earnings. In particular, I shut down the catch-up channel by
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removing the catch-up cost of technology usage, and the growth in life-cycle inequal-

ity reduces 87%. The growth in inequality also decreases when I shut down the direct

channel by equalizing the productivities across the entire technology distribution. How-

ever, these two channels have opposite effects on the growth of mean earnings over

the life-cycle: the catch-up channel depresses earnings growth as it imposes barriers to

technology upgrading but the presence of the direct channel slightly boosts the earnings

growth. Specifically, shutting down the direct channel decreases the growth in life-cycle

earnings by 18%, while the catch-up channel increases the growth in life-cycle earnings

by 15%.

The second insight is that technology usage is a crucial determinant behind college

attainment, which complements the standard human capital view in Becker (1962). In

particular, I find technology provides additional incentives for college education through

the interaction with human capital. When shutting down the direct channel, the fraction

of college workers drops from 29.8% to 17.8%. Once the complementarity between hu-

man capital and technology does not exist, the opportunity of additional human capital

accumulation during the college stage becomes less attractive so the college attainment

rate declines.

Finally, I conduct a policy experiment to evaluate the role of non-linear taxation on

labor earnings. When the progressivity in the economy increases from the U.S. level

to the European level under tax neutrality, the growth in mean earnings decreases by

23% and the college attainment rate drops by 7 percentage points. This result confirms

the consensus from the non-linear taxation literature that a progressive tax dampens the

incentive to accumulate human capital. Guvenen et al. (2014), Blandin (2018), Badel

et al. (2020) and Esfahani (2020) are examples of this line of work. Moreover, I also

find a progressive tax suppresses the incentive of technology upgrading, which further

reduces earnings growth.

However, the effect of a progressive tax on life-cycle inequality is relatively small

5



compared to the above papers for two reasons. Although a progressive tax distorts the

incentive to accumulate human capital and compresses the wage structure, the reinforce-

ment mechanism is slightly strengthened instead. The reason is that a progressive tax

has asymmetric second-order effects on technology usage by human capital. In general,

all workers experience technology downgrading when switching to a progressive tax

but the magnitude of the downgrade is larger for people with low human capital. Con-

sequently, it generates a stronger correlation between human capital and technology,

which largely offsets the reduction in earnings inequality brought by a more compressed

wage structure.

Related literature To the best of my knowledge, this is the first paper to study tech-

nology usage patterns from the life-cycle perspective. Previous studies on individuals’

technology choices only focus on a short period or infinite horizon. For example, Chari

and Hopenhayn (1991) study technology adoption for agents that only live two periods,

and Kredler (2014) extends their work to infinite-horizon. Jovanovic and Nyarko (1996)

propose a theoretical framework to study the trade-off between learning by doing and

adopting new technologies. My work applies important modeling elements from the

above papers in a life-cycle framework. The model also shares similar intuitions with

the literature on technology adoption from the firm’s perspective, like Parente (1994)

and Greenwood and Yorukoglu (1997). Specifically, the incentive of technology up-

grading decreases with age as the benefit can only be enjoyed for a shorter period.

My paper broadens the understanding of earnings inequality by unveiling an im-

portant mechanism associated with technology. My paper not only incorporates key

features from previous work, such as uninsurable earnings shocks and risky human cap-

ital accumulation, but also includes technology choices as another source of inequality

over the life-cycle. It is closely related to Huggett et al. (2011), who find that the dif-

ference in initial conditions accounts for the bulk of the variation in earnings inequality.

6



My analysis complements their findings by showing the interaction between technology

and human capital as an amplifier of life-cycle inequality.

My work is also closely connected to the literature on occupational mobility. Since

the technology index is constructed at the occupational level, technology switching can

also be understood as occupational switching. In line with the work of Dillon (2018) and

Liu (2019), I find that the opportunity of switching technologies helps mitigate negative

earnings shocks. However, instead of focusing on earnings risk in detail, I focus on

how technology switching affects earnings inequality, like Kambourov and Manovskii

(2009b) and Cubas and Silos (2017). In particular, I conduct my analysis in a life-cycle

framework and explicitly emphasize the interplay between technology switching and

endogenous human capital investments.

The paper is organized as follows. In Section 2, I present empirical evidence on tech-

nology usage and its relationship with earnings. In Section 3, I introduce a life-cycle

model with endogenous technology and human capital choices. I discuss the parame-

terization and model’s performance in Section 4. In section 5, I conduct counterfactual

experiments to understand model mechanisms. Section 6 evaluates a policy experiment

of a non-linear tax on labor earnings. Section 7 concludes.

2 Technology Usage and Earnings

This section is devoted to studying technology usage patterns and their direct effects on

earnings. Using the novel measurement of technology, I investigate technology usage

behavior over the life-cycle and across educational groups. I find there is a significant

gap in average technology level across educational groups over the life-cycle. In ad-

dition, the average technology level conditional on education does not fluctuate much

over the life-cycle.

I also find a strong and positive correlation between technology level and earnings
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after controlling for education. This correlation is robust both at the individual level

and the occupational level. In addition, the observed dispersion in technology usage can

directly account for 4.3 percentage points of overall earnings inequality and 38% of the

growth in life-cycle inequality.

2.1 Measurement of technology

The empirical challenge to study technology usage patterns is the lack of a direct mea-

sure at the individual level. To overcome this obstacle, I construct an index distance to

the frontier to approximate technology usage using occupations as the proxy based on

Gallipoli and Makridis (2018). The index is based on how intensively people use in-

formation technologies in daily work. The rationale behind this measure is inspired by

well-documented facts that information technologies can greatly improve productivity

at different levels.2

This index measures how far one technology (occupation) is behind the frontier tech-

nology, i.e., the most advanced technology. Since the frontier technology is evolving

over time, this index can be interpreted as the relative position in the moving technol-

ogy distribution.

I draw detailed information from Occupational Information Network (O*NET) data

set on how intensively workers use information technologies. The O*NET is a com-

prehensive database of worker attributes and job characteristics. The survey interviews

a random sample of workers in each occupation. Interviewees answer questions on a

scale from 1 (“not important”) to 6 (“extremely important”) that measures the impor-

tance of some specific knowledge, tasks, or skills. A large literature has used the O*NET

database to analyze the labor market outcomes using the task approach (See Autor et al.

(2003) and David and Dorn (2013)).
2Stiroh (2002) shows that the usage of information technology improves productivity at the industry

level. Bloom et al. (2012) shows a similar result at the firm level. Akerman et al. (2015) find that the
adoption of broadband internet improves the productivity of skilled workers.
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I construct the index distance to the frontier by extracting values of characteristics

related to IT technology. Specifically, I consider a set of knowledge, tasks and skills

associated with IT technology and sum up the levels of importance (from 1 to 6). After

that, I normalize the sums of all occuaptions to the interval [−1,0]. The details of the

construction are shown in Appendix A.

This index, as implied by its name, describes how far the technology used in one

specific occupation is behind the frontier technology. By construction, the occupation

that requires the most intensive IT activities is considered to be the frontier technology

and its distance to the frontier is 0. Table 1 shows a sample of representative occupa-

tions and their distances in each distance quintile. For instance, janitors are the most

common occupation in the first distance quintile (bottom of the technology distribution)

and computer scientists are the most common occupation in the 5th distance quintile.

Table 1: Examples of Occupation and Distance

Distance quintiles 1 2 3 4 5

Non-college workers
Occupations Janitors Truck drivers Supervisors of salers Automotive technicians Computer scientists

Distances -0.95 -0.76 -0.57 -0.38 -0.10

College workers
Occupations Janitors Clergies Managers Accountants Computer scientists

Distances -0.95 -0.65 -0.45 -0.35 -0.10

Note: The table presents the occupation with most workers in each quintile of the distance by education.

I assume the index is time-invariant over the period of the analysis, i.e. the distance

of an occupation relative to the frontier is fixed even though the frontier technology is

evolving over time. For instance, consider an occupation with the task of inputting and

editing text. Workers used IBM MT/ST, a stand-alone word processing device, in the

1970s and switched to computer softwares like WordPerfect or Microsoft Word in the

1990s. Since both technologies were up-to-date at their time, the relative distance of

this occupation does not change. Meanwhile, the absolute level of technology increased

over time because computer softwares are more efficient than typewriters.
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Figure 1: Correlation of Technology Indices over Time

(a) 1977 and 2003 (b) 1977 and 2021

Note: The figure shows the correlation of occupational technology indices across different years.
Source: Author’s calculation from the 4th edition of DOT (1977), O*NET 2003 and 2021.

To justify this assumption, I provide empirical evidence to show that there are no

significant changes in task intensity and skill composition so this measurement is robust

over time. The O*NET data set is only available from 2003 so I use the information

from the fourth edition of the Dictionary of Occupational Titles (DOT) conducted in

1977, which is the predecessor of the O*NET, to check how IT-related task intensity

changes across time. I construct an index based on a similar combination of skills and

tasks for each occupation in the DOT and compare it with the indices from the O*NET

in 2003 and 2021 separately.

Standard OLS regressions indicate that the technology index in 1977 has strong

explanatory power on the index in 2003 as well as in 2021 with corresponding R-squared

of 0.62 and 0.63.3 Figure 1 also shows the scatter plots of indices between different

periods. Though there are some occupations become more or less IT intensive over

3The explanatory power of the index in 2003 on the index in 2021 is even higher, with a R-squared of
0.74.

10



time, the above empirical evidence suggest that the skill composition and task intensity

from which I infer relative technology level do not change in general.

2.2 Technology usage patterns

Utilizing the constructed index, I document technology usage patterns across education

and over the life-cycle. I find a huge variation in technology usage by education: the

fraction of college workers increases with technology level. In addition, there is a con-

siderable gap in technology level between college and non-college workers throughout

life-cycle. However, the life-cycle technology usage profile is relatively stable as the

mean technology level barely changes over the life-cycle for both educational groups.

Specifically, the change in the mean distance between age 23 and 60 for non-college

workers is 0.04 whereas the gap in average technology level across education is around

0.25.

Data source The analysis draws information from the Current Population Survey

(CPS) Annual Social and Economics Supplement (ASEC) over the period 1968-2019.

I restrict the sample to full-time full-year male workers with earnings above 50% of

the federal minimum wage in that year. Self-employed workers are also excluded.4 I

harmonize occupational codes in both CPS and O*NET to the 2010 SOC code and link

the constructed index from the O*NET to the CPS sample.

Technology usage by education The distribution of technology usage varies signif-

icantly across educational groups as shown in Figure 2 panel (a). I divide workers

into two educational groups: with college degrees and without college degrees. College

workers are largely concentrated on the right tail of the distribution whereas non-college

workers mainly work with less advanced technologies with a distance of less than -0.6.

4Similar criteria are applied in the literature on earnings inequality. See Storesletten et al. (2004) and
Guvenen (2007) for example.
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Figure 2: Technology Distribution by Education

(a) Technology distribution by education (b) Relative Share by education

Note: Panel (a) shows the distribution of technology usage by educational groups: workers with and
without college degrees. Panel (b) shows the relative share of college workers and non-college workers
by distance (technology level). The technology distribution is divided by 20 bins and the relative share is
calculated in each bin.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

Panel (b) shows that the relative share of college workers increases with the tech-

nology level. At the bottom of the technology distribution (distance less than -0.8),

around 90% of the workers don’t have a college degree. For example, the relative share

of college workers in janitors (with a distance of -0.95 as shown in Table 1) is around

5%. The share of non-college workers decreases with distance and less than 30% of

non-college workers are in the top 10% technologies. The increasing share of college

workers suggests there could be a selection mechanism of technology choices based on

education.

Life-cycle profiles of technology usage Next, I look at technology usage patterns

over the life-cycle. I construct the life-cycle profiles by extracting the age coefficients
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(β age
i,t ) from the following statistical model:

y j,c,t = β
age
j +β

year
t +β

cohort
c + εc, j,t (1)

where y j,c,t is the statistic of interest from cohort c of age j at time t. Due to the

linear relationship between age, year, and cohort (c = t− j), it is impossible to identify

three terms separately without further assumptions. The common way to deal with this

problem is to normalize either the time effects β
year
t or the cohort effects β cohort

c to zero

and attribute the trend to the other factor.

To control for both age effects and cohort effects, I lump three adjacent cohorts

into one aggregate cohort which gives me extra degrees of freedom to identify three

terms separately.5 The implicit assumption of this linear statistical model is that the

time effects (or cohort effects) only interact with the age profile through the additively

separable form.

Two features stand out from the life-cycle profiles of technology usage by education

as shown in Figure 3. First, there is a considerable gap in technology level between

college and non-college workers even from the beginning of the life-cycle. Specifically,

the mean distance of college workers is 0.27 higher than non-college workers at age 25.

This difference is 1.3 times the standard deviation of the distance in the entire sample.

Second, the life-cycle profiles of technology usage are relatively flat, especially for

college workers. For non-college workers, the growth of mean distance from age 23 to

60 is 0.04, which is equivalent to 20% of the standard deviation of the distance in the

sample. The growth of mean distance is only 0.02 for college workers over the same

period. Put differently, the gap in technology level across education is relatively constant

throughout life-cycle between college and non-college workers. I also present the life-

cycle profiles of different percentiles in Appendix C.1 to show that the distribution of

technology usage is relatively stable over time.
5The shape of age profiles does not change if I only control for year effects or cohort effects.
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Figure 3: Life-cycle Technology Usage Profiles

Note: This figure presents the life-cycle profile of technology usage using the constructed index distance
to the frontier measured at the occupation level. A higher distance means a more advanced technology.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

One additional caveat regarding the interpretation of life-cycle profiles: the age pro-

file of mean distance represents the relative speed of technology upgrading since the

frontier technology grows over time. By construction, the distance remains constant

if one sticks to the same occupation over time, which implies that the worker adopts

new technology at a pace that is consistent with the growth rate of the entire technology

distribution.

2.3 Technology and earnings

The observation on technology usage patterns naturally begs the question: how does

technology affect earnings? I present empirical evidence to show positive correlations

between technology level and earnings at different levels, and quantify the contribution
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of technology to earnings inequality.

To study the relationship between technology usage and earnings at the individual

level, I include the technology index to the Mincer regressions as described below:

lnwi,t = β0 +β1ni,t +∑
t

β2,tyeart +β3agei,t +β4age2
i,t +X ′i,tγ + εi,t (2)

where lnwi,t is log real annual earnings for individual i in year t, ni,t is the distance to

the frontier technology constructed at occupational level, and Xi,t is the set of control

variables, including dummies of race, education, marital status and states.

Table 2: Effects of Technology on Earnings

Mincer regression Two-step
(1) (2) (3) (4)

Technology (β1) 7 0.691 7 0.777
(0.002) (0.063)

Occupation dummies 7 7 X 7

N 1262416 442

R2 0.326 0.369 0.410 0.473

Note: Column (1) presents the estimation of the standard Mincer regression without the technology index.
Column (2) shows the estimation of the modified Mincer regression with the technology index as shown
in Equation (2). Column (3) includes broad occupational dummies based on (2). Column (4) shows the
results of the two-step regression in Equation (3) and (4) and the R2 is for the second step regression.
Source: CPS ASEC 1968-2019 and O*NET.

Table 2 column (2) shows that the estimated coefficient on technology is 0.691 with

a standard error of 0.002, which is statistically significant from zero. Since the distance

takes value from the interval [−1,0], the result implies that workers in the frontier tech-

nology (n = 0) on average earn 69.1% more relative to workers in the least advanced

technology (n =−1) after controlling for observables.

The comparison between column 1 and 2 indicates that the inclusion of the tech-

nology index increases the R2 of the standard Mincer regression from 0.326 to 0.369 as

shown. This result implies that technology usage contributes 4.3 percentage points of
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the overall variation in earnings. That is, the technology index increases the explanatory

power of the standard Mincer regression by 13%.

Since the technology index is constructed at the occupational level, there is a perfect

linear relationship between the technology index and occupation. Therefore one might

wonder to what extent the variation is accounted for by the technology index instead

of occupational fixed effects. In column (3), I replace the technology index with oc-

cupation dummies and find that the R2 increases to 0.410. Compared to R2 in the first

two columns, it implies that the technology index is able to explain almost half of the

variation across occupations.

To solve the collinearity problem, I run a two-step regression which allows me to

disentangle the effect of technology usage from occupational fixed effects. I first run the

Mincer regression with occupational dummies (OCC j) as shown in Equation (3). The

first stage is to extract the occupational fixed effects λ j. In the second step, I regress

the estimated occupational fixed effects λ j on the technology index n j to examine to

what extent the variation across occupations can be accounted for by the variation in the

technology index.

lnwi,t = β0 +∑
j

λ jOCC j +∑
t

β2,tyeart +β3agei,t +β4age2
i,t +X ′i,tγ + εi,t (3)

λ̂ j = β
′
0 +β1n j + ε j (4)

Column (4) in Table 2 shows that the positive relationship between technology and

earnings is also robust at the occupation level. The effect of technology even becomes

stronger as the estimated coefficient on technology increases to 0.777 with a standard er-

ror of 0.063. The reason is that some high-paying occupations like managers or lawyers

are not at the top of the technology distribution. Such occupations require interpersonal

or leadership skills and do not involve a high intensity of technology usage. As a result,
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the coefficient on technology will be underestimated if not controlling for such skills.

The two-step regression helps me to disentangle the impact of technology from other

valuable skills of an occupation. Therefore its estimation is higher than the one from

the modified Mincer regression.

More importantly, as shown in column (4), the R2 in the second stage of the two-

step regression is 0.473. This number implies that almost half of the variation across

occupations (λ̂ ) can be explained by the constructed index of technology usage. This

is also quantitatively consistent with the comparisons in R2 from column (1) to column

(3). Specifically, the occuaptional fixed effects increases R2 of the standard Mincer

regression from 0.326 to 0.410 and the technology index contributes 4.3 percentage

points.

Contribution to life-cycle inequality I conduct a simple accounting exercise to demon-

strate how technology usage affects life-cycle earnings inequality. I find that the ob-

served variation in technology usage accounts for 38% of the growth in life-cycle earn-

ings inequality.

To isolate the impact of technology, I construct an alternative measurement of earn-

ings as described below:

ln w̃i,t = lnwi,t− β̂1ni,t (5)

where wi,t is the observed annual labor earnings for individual i at time t, ni,t represents

the distance to the frontier and β̂1 is the estimated coefficient of the technology index in

Table 2 column 2. I denote ln w̃i,t as the residualized earnings, which rules out the part

of earnings that can be explained by technology usage.

I compare the age profiles of life-cycle earnings inequality between the raw earnings

(lnwi,t) and the residualized earnings (ln w̃i,t). In particular, I utilize the statistical model

described in Equation (1) and use the variance of log earnings as the metric of inequality.

The wedge between these two age profiles of earnings inequality can be understood as
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Figure 4: Life-cycle Earnings Inequality

Note: The figure shows the age profile of variance of log earnings estimated from Equation (1). The solid
line represents the raw earnings lnwi,t and the dotted line represents the residualized earnings ln w̃i,t as
described in Equation (5), which excludes the part explained by technology. Both levels are normalized
to 0 at age 23 for comparison purpose.
Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

the variation accounted for by technology usage.

Figure 4 shows that the growth in life-cycle inequality drops significantly using the

residualized earnings, which excludes the part explained by technology. Specifically,

the level of raw earnings inequality increases 12.5 log points over the life-cycle but the

growth decreases to 7.7 log points when using the alternative measurement of earnings.

This means that the observed variation in technology usage directly contributes 38% of

the growth in life-cycle inequality.6

6I further conduct a decomposition exercise in Appendix C.2 to show that the bulk of the variation in
technology usage is explained by within-education variation instead of between-group variation.
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Discussion The above analysis provides a sketch of the relative importance of tech-

nology on life-cycle earnings but the effects might be underestimated. The reason is that

the reduced-form analysis cannot capture how technology affects earnings through the

interaction with human capital. As shown in Figure 2 and Figure 3, there is a positive

correlation between technology and education that lasts throughout the life-cycle. These

facts suggest that technology usage and human capital could be jointly determined from

the very beginning of the life-cycle.

In addition, there are other empirical studies showing that education and technology

usage are correlated. For instance, Riddell and Song (2017) find that education in-

creases the probability of technology adoption. Mincer (1989) also provides empirical

evidence on how technological change affects human capital adjustment. Therefore one

needs a life-cycle model that can explain the joint distribution of technology usage and

education to thoroughly quantify the contribution of technology to life-cycle earnings.

3 A Life-Cycle Model for Technology Usage

I develop a life-cycle model with a college decision, endogenous technology choice,

human capital investments, and incomplete-markets to quantify how technology usage

affects life-cycle earnings. The model allows for rich interactions between technology

and human capital decisions. I will first ask the model to reproduce technology usage

and earnings patterns over the life-cycle for both college and non-college workers and

then shut down the technology channel to see what happens to earnings growth and

earnings inequality. A tax system is also embedded in the model which allows me

to study the role of technology if the economy switches from a proportional tax to a

progressive tax.
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3.1 Environment

Time is discrete. Each period a unit mass of individuals is born who live up to J periods.

The population growth rate is µ . Individuals enter the economy with high-school de-

grees at age 18. They can spend four years in college or enter the labor market directly.

During the working stage, they maximize expected lifetime utility by choosing which

technology to work with in each period and making human capital investments. They

will retire exogenously after age JR.

I assume workers supply one unit of labor inelastically in each period. Individuals

also borrow and save assets at the risk-free rate r to smooth consumption over the life-

cycle. The model is in a partial equilibrium where I abstract away from the demand side

of technologies and take the growth rate of the technology distribution as exogenous.

Technology and earnings Technology is chosen from the interval [−1,0] to closely

follow the concept of the distance to the frontier in the empirical part. Earnings is a

function of technology n, human capital h, productvity z and time t:

w = exp(z) ·h · γ(η ·n+t) (6)

where the component γ(η ·n+t) can be interpreted as the marginal productivity of working

with technology n at time t.

The parameter γ stands for the growth rate of the technology distribution. If one

stays at the same relative position in the technology distribution from t to t + 1, his

earnings would grow at the rate

γ =
exp(z) ·h · γ(η ·n+t+1)

exp(z) ·h · γ(η ·n+t)
(7)

The parameter η captures the productivity difference within the technology distribu-

20



tion. The earnings ratio between workers in the frontier technology (n = 0) and workers

in the least advanced technology (n =−1) equals γη . So η rescales the productivity gap

for the interval [−1,0].

Human capital evolution I model human capital evolution in the spirit of Ben-Porath

but the set-up is different mainly in two aspects. First, human capital accumulation is

uncertain in the sense that the evolution is stochastic. One’s investments can only affect

the probabilities. Second, the accumulation process is stepwise such that one cannot

skip intermediate levels.

Following Jung and Kuhn (2019), I assume the human capital levels are discrete and

represented by an evenly spaced ordered set [hmin, ...,hmax]. During the working stage,

individuals make human capital investments by choosing the effort e ∈ [0,1] which af-

fects the law of motion of human capital evolution. The cost is captured by the disutility

term ζ e2.

The evolution of human capital follows a Markov process with probabilities that

depend on the effort e, age j, and education s ∈ {College,Non-College}. In particular,

let h+ (h−) denotes the immediate successor (predecessor) of human capital level h, the

probability that human capital increases to the next level is given by

Ps(ht+1 = h+|ht = h,e, j) = ρ
j−22 · ps · e (8)

where ps is the baseline probability that varies by education.7 Human capital deprecia-

tion is modeled by the term ρ j−22 with ρ < 1. When workers get older, it is less likely

to climb up the skill ladder as the baseline probability is multiplied by a factor less than

7This assumption is to illustrate that the average learning ability is different across education, like in
Kong et al. (2018). The detailed discussion is postponed to Section 4.2.
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one. The probability that human capital decreases to the previous level is

Ps(ht+1 = h−|ht = h,e, j) = (1−ρ
j−22 · ps · e)αdown

s (9)

where αdown
s ∈ [0,1] and it is also education-specific. The level of human capital remains

the same with probability

Ps(ht+1 = h|ht = h,e, j) = (1−ρ
j−22 · ps · e)(1−α

down
s ) (10)

The law of motion of human capital evolution is summarized in the following equation

h′ =


h+ with probability ρ j−22 · ps · e

h with probability (1−ρ j−22 · ps · e)(1−αdown
s )

h− with probability (1−ρ j−22 · ps · e)αdown
s

(11)

When the human capital level is hmin (hmax), the probability of human capital decrease

(increase) is absorbed into the probability of staying.

The human capital accumulation process is stepwise. In order to reach the maximum

level hmax, one needs to experience all its predecessor levels. If a worker falls from the

human capital ladder, it would take some time to climb back to the original level. Put it

differently, the loss cannot be reimbursed by an excess amount of investments in a short

time.

Cost of switching technologies I assume human capital is technology-specific (Chari

and Hopenhayn (1991) and Kambourov and Manovskii (2009a)) and partially transfer-

able (Jovanovic and Nyarko (1996) and Violante (2002)). The knowledge accumulated

at old technologies cannot be completely applied in new technologies. The following

equation shows the amount of human capital that can be transferred when switching to
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new technologies:

h̃(n,n′,h) =

h if n≤ n[
1− (n′−n)2]h if n′ > n

(12)

Equation (12) shows the switching cost is asymmetric such that it only occurs when

people upgrade technology (n′ > n). If the worker chooses technology downgrading

(n′ ≤ n), he can keep the same human capital level after switching. The downward cost

is eliminated to decrease the obstacle of technology downgrading, which is a common

phenomenon in the data.

The cost of technology upgrading in terms of the human capital loss is increasing

in the distance of the switch (n′− n). This functional form is built on the work from

Jovanovic and Nyarko (1996) where they provide micro foundations using the Bayesian

updating setup.

More experience can be carried to new technologies if they are highly correlated

with the old ones. For example, most of the coding skills in Matlab can be directly

applied to Python. However, the experience with Excel, a less-advanced technology

relative to Matlab, can hardly be helpful to learn Python. The correlation of technology

is interpreted as the distance of the switching (n′− n). So the loss in human capital is

small if two technologies are close.

3.2 College decisions

Workers are endowed with initial human capital h0 and psychic cost of college education

q. Both initial conditions are drawn from two independent log normal distributions:

h0 ∼ LN(µh0 ,σ
2
h0
) and q∼ LN(µq,σ

2
q ) (13)

Given the combination of h0 and q, workers are endogenously sorted into college
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path and non-college path. College workers spend four years to acquire the desired

human capital level at the cost of disutility which depends on q then they enter the

working stage. Another benefit of college education is that college workers are more

likely to work with advanced technologies when entering the labor market relative to

non-college workers after graduation. Non-college workers will directly enter the labor

market with initial human capital h0.

Non-college path If the worker does not attend college, he will directly enter the

working stage at age 18 with initial human capital h0. So the value as a non-college

(NC) worker is

WNC(h0) =
∫

n

∫
z0

VNC(a0,h0,n,z,18)dFz(z0)dFNC
n (n) (14)

where VNC(a0,h0,n,z,18) is the value as non-college worker at the working stage with

asset level a0, human capital h0, technology n, productivity z at age 18. The initial

productivity is drawn from the distribution N(µz0,σz0) with CDF Fz(z). Workers’s ini-

tial technology is also determined stochastically and it is drawn from the distribution

FNC
n (n).

College path If the worker decides to go to college, he chooses human capital invest-

ment x in the college. The production function of human capital is given by

hc(h0,x) = (h0 · x)αh +h0 (15)

and the cost of investment is captured by the following disutility term

q(x+1{x > 0}) (16)
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This disutility can be understood as the psychic cost of attending college.8 The worker

has to pay (1) the fixed cost of college q ·1{x > 0}, and (2) the cost that is proportional

of the investments q · x. Since both terms are increasing in the cost parameter q, it is

less costly for people born with lower q to attend the college and acquire human capital

investments.

The value of the college education is presented as:

WC(h0,q) = max
x

−q(x+1{x > 0})+β
4
∫

n

∫
z0

VC(a,hc(h0,s),n,z,22)dFz(z0)dFC
n (n)

(17)

Similarly, VC stands for the value of a college worker at the working stage. This con-

tinuation value is discounted by β 4 since it takes four years to complete the college

education. For simplicity, I abstract away from the consumption-saving problem during

the college stage.

College workers’ initial productivity level is drawn from the same distribution Fz(z)

as non-college workers. However, their initial technology choice is drawn from a dif-

ferent distribution FC
n (n) which has first-order stochastic dominance over FNC

n (n). That

is, college workers on average work with more advanced technologies. I postpone the

discussion of the details to Section 4.1.

College attainment The lifetime value of a worker with initial human capital h0 and

cost q is described as

W (h0,q) = max{WC(h0,q),WNC(h0)} (18)

Given the combination of initial conditions, people choose either the college path or the

non-college path that generates the highest lifetime value.

The cost of college is to forgo four periods of utility from working stage. The benefit

8See Restuccia and Vandenbroucke (2013) for example.
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of college education is mainly two-fold. First, workers can directly make human capital

investments in the college stage and it is not subject to the stepwise procedure. That

is, one with a very low q could accumulate a lot of human capital during college stage.

Second, college workers are more likely to work with advanced technologies relative

to high-school workers since they are exposed to new technologies in the college stage.

This feature accounts for the difference in the initial technology conditions between the

two educational groups.

3.3 Working stage

In this subsection, I describe the value functions in the working stage by education types

m ∈ {C,NC}. In short, both college and non-college workers face same idiosyncratic

productivity shocks over the life-cycle. However, the transitions of shocks and human

capital are different by education, which I will emphasize later.

Let Vs(a,h,n,z, j) denote the value of a worker at age j working at technology n

with education s, human capital level h, asset level a and productivity shock z at the

beginning of the period. The value function is

Vs(a,h,n,z, j) =
∫

max{V stay
s (a,h,n,z, j),V move

s (a,h,n,Z, j)}F(Z) (19)

where V stay
s (a,h,n,z, j) denotes the value of staying at the same relative position and

V move
s (a,h,n,Z, j) is the value of moving to new technologies. Z stands for the vector

of technology-specific productivity shocks.

At the beginning of the period, workers first decide whether to stay with the same

technology or move to new technologies. The decision is based upon the realization of

the vector of shocks Z over the technology distribution. That is, the worker will know

his productivity zn if he moves to technology n. Each shock zn is drawn from the same

normal distribution N(µz,σ
2
z ) independently. This vector of shocks only matters when
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switching to new technologies and does not affect the value of staying.

The value of staying is described below. If the worker chooses to stay, he will

work with technology n this period and collect earnings based on current productivity

level z and human capital h.9 After that, the worker chooses the amount of effort e

spent on human capital investments and asset level in the next period a′ (or equivalently

consumption level c). The taxes are summarized as T (w,a) which I will explain in

Section 3.5.

V stay
s (a,h,n,z, j) = max

c,a′,e
u(c)−φs(n,h, j)−ζ e2

+β

∫ hmax

∑
hmin

Vs(a′,h′,n,z′, j+1)Ps(h′|h,e, j)dFs(z′|z)

s.t. a′+ c = (1+ r)a+w(h,n,z, j)−T (w,a)

a′ ≥ a and e ∈ [0,1]

(20)

The worker needs to pay a catch-up cost φs(n,h, j) when staying and this cost comes

as the disutility term

φs(n,h, j) = φ0(1+n)φ1hφ2δ
j−23

s (21)

where φ0,φ1 > 0 and φ2 < 0. Since the entire technology distribution is progressing

over time, staying at the same relative position also means technology upgrading so he

must update his knowledge to operate the new technology. The catch-up cost is also

adjusted by a education-specific age factor δs to model that the learning cost varies over

the life-cycle.

The catch-up cost is increasing in the technology level n and decreasing in human

capital level h. That is, it is easier to update the latest knowledge for people with higher

levels of human capital. This feature captures the spirit of Galor and Moav (2000) where

time required for learning the new technology diminishes with the level of ability. This

9Here earnings is a function of age j instead of time t. I implicitly assume the baseline cohort enters
the labor market at t = 0 so the time index conincides with age j.
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functional form is also needed to generate the difference in the level of technology

between college and non-college workers.

For the continuation value, he will stay at the same relative position n in the next

period. His human capital level will evolve stochastically with probability Ps(h′|h,e)

as described in Equation (11). This is one distinction between college and non-college

workers in the working stage since the baseline probability is different.

Another distinction in the value function across education groups is the law of mo-

tion of productivity shock. The shock z evolves stochastically according to a mean-

reverting AR(1) process as the following

z′(z) = ρ
z
s z+ ε

z
s (22)

where εz
s ∼ N(0,σ2

εs
). So the difference comes from the size of innovation σ2

εC
(σ2

εNC
)

and the persistence of shocks ρ
z
C (ρz

NC).

This set-up is common in the literature of income process and earnings inequal-

ity.10 In addition, it serves the purpose of increasing occupational mobility especially

for technology downgrade. One driver behind technology switching in the model is that

the worker draws an extremely good productivity shock for one specific technology. In

the absence of this process, people would get stuck with technologies where they have

high productivity levels. Thus workers will not switch to other technologies unless they

draw a better productivity shock, which is less likely to happen since the current shock

is already good enough.

The value of switching to a new technology is described below:

V move
s (a,h,n,Z, j) = max

n′∈[−1,0]
V stay

s (a, h̃(n′,n,h),n′,zn′, j) (23)

where zn′ is the technology-specific productivity shock from the vector Z and h̃(n′,n,h)

10See Guvenen (2009) for a empirical investigation in this topic.
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is the amount of human capital that can be carried to new technology n′. When a worker

decides to switch to a new technology n′, he will suffer the loss in human capital and then

the problem goes back to the “stay” case where he chooses human capital investments

and smooths consumption.

Figure 5: Timeline of the working stage

age j

Vs(a,h,n,z, j)

draw the vector
of shocks Z

stay (same h and z, n′ = n)

move and choose n′

h̃(n,n′,h) and zn′ determined

collect earnings
w(h,n,z, j)

choose a′ and e

h′ and z′ realized
enter the next period

age j+1

Vs(a′,h′,n′,z′, j+1)

The timing of the working stage is summarized in Figure 5. At the beginning of the

period, workers first draw the vector of shocks Z over the technology distribution and

then decide to stay or move. If one chooses to stay, he will collect labor income based

on current state variables. If he decides to move, he also chooses which technology

to work with in this period. Then, his human capital level is determined according to

Equation (12) and the productivity level is zn′ .

After collecting labor income, workers choose effort e to invest in human capital,

smooth consumption by choosing asset holding tomorrow a′, and then enter the next

period. The value function is evaluated after the realizations of human capital and shock.

The value function in the last period of working stage is

V stay
s (a,h,n,z,JR) = max

a′
u(c)−φs(n,h,J)+βV R

s (a′,JR +1)

s.t. a′+ c = (1+ r)a+w(h,n,z,JR)−T (w,a)
(24)

In the last period of the working stage, workers decide how much to save for the retire-
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ment period and do not make any human capital investments. The continuation value

V R
s only depends on savings a′ and age.

3.4 Retirement stage

Individuals retire after age JR and get no labor income. They only live off their accumu-

lated assets plus social security benefits net off taxes. The problem of retirement at age

j > JR is described below:

V retire
s (a, j) = max

a′
u(c)+βV retire

s (a′, j+1)

s.t. a′+ c = (1+ r)a−T (0,a)+bss
s

(25)

Notice that workers in the retirement stage no longer receive labor earnings so the first

argument in the tax function is zero. Workers also receive social security benefits af-

ter retirement. The benefit is also education-specific and on average college graduates

receives more benefit than high-school graduates: bss
C = κbss

NC with κ > 1.

3.5 Tax system

The tax system T (w,a) in the model consist of two parts: income tax T inc and social

security T ss. Individuals’ labor earnings and capital income are taxed at a flat rate τ

and the social security system taxes labor earnings at the rate τss for individuals at the

working stage. So the tax function can be presented as

T (w,a) = τ(w+ ra)+ τssw (26)

After retirement, agents receive fixed social security benefits bss
C or bss

NC in each

period. The social security system is pay-as-you-go, i.e., it finances the benefits from

taxes collected from individuals during the working stage. Government also consumes
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G for non-productive purpose to balance the budget.11

3.6 Sources of life-cycle inequality

The sources of earnings inequality over the life-cycle mainly come from three aspects:

human capital (h), technology n, and productivity shocks z. In this subsection, I dis-

cuss these three sources and their associated mechanisms, and explain how they affect

earnings inequality over the life-cycle.

3.6.1 Interaction between technology and human capital

Technology interacts with human capital mainly in three channels. The first channel

is the direct channel, i.e., earnings is a function of technology and human capital as

shown in Equation (6). This set-up explicitly assumes that technology and human cap-

ital are complements. As a result, the marginal benefit of human capital investments

increases with technology so people in advanced technologies have more incentives to

accumulate human capital. This idea dates back to the insight of Schultz (1975) where

technological progress complements ability in the formation of human capital. What’s

more, the incentive of technology upgrading also varies by human capital due to the

complementarity.

The catch-up channel indicates that the cost of technology usage negatively depends

on the level of human capital as described in Equation (21). This equation indicates it

is easier to stay with advanced technologies for workers with high human capital. Since

this cost applies to all workers regardless of switching or not, it also imposes barriers to

technology upgrading. To sum up, this catch-up channel lowers the cost of technology

usage for people with high human capital.

The last channel is the switching channel where the technology upgrading comes

with the loss of human capital. Since the switching cost is proportional as shown in

11See the formal definition of the stationary equilibrium in the Appendix.
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Equation (12), workers with high levels of human capital will suffer more human capital

when switching to better technologies. Thus they are less likely to make a huge step

toward frontier technology. This channel works in the opposite direction as the catch-up

channel since it discourages people with high human capital to upgrade technology.

The first two channels generate a positive correlation between human capital and

technology which amplifies earnings dispersion over the life-cycle. On one hand, the

direct channel provides more incentives for human capital investments for workers in

advanced technologies. On the other hand, workers with high levels of human cap-

ital are more likely to switch to advanced technologies due to the catch-up channel.

Consequently, this reinforcement mechanism between human capital and technology

will magnify the dispersion in earnings through the interaction between these two com-

ponents and the correlation will become stronger over the life-cycle. Meanwhile, the

switching channel reduces earnings dispersion as it depresses technology upgrading,

especially for people with high human capital.

3.6.2 Idiosyncratic shocks

Another important source of inequality comes from idiosyncratic productivity shock z.

I follow the standard set-up in the literature to model income risks as an AR(1) process.

However, the introduction of technology decisions alleviates the dispersion brought by

the shocks. The reason is that the opportunity of switching technologies in each period

helps workers mitigate bad shocks.

In the standard AR(1) income process, one might experience a sequence of persistent

negative shocks because of bad luck. In my model, due to the presence of technology

decisions, one can easily “reset” his productivity level by switching to another technol-

ogy with high productivity shock so the above scenario will not happen. That is, the

opportunity of switching technologies makes shocks less persistent, which lowers the

level of dispersion generated by productivity shocks.
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4 Parameterization and the Benchmark Economy

This section describes how I set the parameters in the model and discusses the properties

of the benchmark economy. I first choose a collection of parameters exogenously, either

taken from the literature or directly identified from the data. The rest of the parameters

are jointly calibrated to match the life-cycle profiles for both college and non-college

workers and other statistics. The parameters are listed in Table 3.

Table 3: Parameterization

Category Meaning Parameter

Externally chosen parameters
Demographic population growth rate µ = 0.0012

rate of return on asset r = 0.047
life expectancy and retirement age J = 75, JR = 64

Tax proportional tax rates on income τ = 0.15, τss = 0.1
Technology growth rate of the technology distribution γ = 1.005

productivity difference within the technology distribution η = 111
Initial distribution of tech approximated by Beta distribution from the data

Internally chosen parameters
Preference discount factor β = 0.988

disutility of human capital investments ξ = 0.25
Human capital human capital grid hmin = 1, hmax = 17.6

baseline probability of human capital increase pC = 0.35, pNC = 0.23
human capital decrease parameter αdown

C = 0.15, αdown
NC = 0.07

depreciation ρ = 0.99
human capital production at college stage αh = 0.35

Productivity shocks size of innovation σz = 0.132, σ ε
C = 0.143, σ ε

NC = 0.131
persistence of shocks ρ

z
C = 0.95, ρ

z
NC = 0.92

Catch-up cost disutility associated with technology usage φ0 = 3.1, φ1 = 1.5, φ2 =−1.3
age adjustment in disutility δC = 0.994, δNC = 0.999

Initial distributions initial human capital h0 µh0 = 1.01, σh0 = 0.1
psychic cost of college q µq = 2.91, σq = 0.5
initial productivity z µz0 = 0, σz0 = 0.025

Note: This table presents parameters used in the benchmark economy. The first set of parameters is
chosen from external sources. The second set of parameters is jointly determined to match the life-cycle
profiles of mean earnings, variance of log earnings and mean distance for both college and non-college
workers as well as the average college attainment rate.

4.1 Parameters chosen from external source

Demographics The life-cycle starts from age 18 to 75 but I only focus on the life-

cycle statistics from age 23 to 60. Individuals retire after age 64 and live another 10
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periods. The annual population growth rate is 1.2%, which is the geometric average

over the period 1959–2007 from the Economic Report of the President (2008). I assume

it is a small open economy where the interest rate is set exogenously to be 0.047 so the

after-tax interest rate is 4%.

Tax and social security In the benchmark model, I set the flat tax rate τ on income

to be 0.15, which is the approximation of the tax rate in the U.S. once itemizations, de-

ductions and income-contingent benefits are considered. The tax rate of social security

on labor earnings is 0.1, which is close to the average rate in the period of analysis.

I assume the social security benefits for college workers are 17% higher than non-

college workers:

bss
C = 1.17bss

NC (27)

This number is borrowed from Guner et al. (2021) where they document how social

security benefits vary across household types and educational types.

Technology The Mincer regression with the technology index is used to identify pa-

rameters in the earnings function. Taking log of the earnings function in Equation (6)

generates

lnw = z+ lnh+(lnγη) ·n+ lnγ · t (28)

where n is the distance to the frontier and t represents year. Notice that this is analogous

to Mincer regression used in the empirical analysis.

Equation (28) implies that lnγ corresponds to the coefficient of year in the Mincer

regression and lnγη maps to the coefficient of the technology index. Since I use year

dummies in the Mincer regression, I further run a linear regression on the estimated year

dummies and estimate the annual growth rate of the technology distribution is 0.5%, i.e.,

γ = 1.005. That is, if one stays with the same technology over time, all else equal, the
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natural growth rate of his earnings is 0.5%.

After pinning down γ , the parameter η is identified to match the coefficient of the

technology index in the Mincer regression. Setting η = 111 means that the earnings

gap between the most advanced technology (n = 0) and the least advanced technology

(n =−1) is 0.77 in the model, which is consistent with the empirical findings in Section

2.

Figure 6: Initial Technology Distributions (college and non-college)

(a) Non-college at age 18 (b) College at age 23

Note: This figure shows the initial distribution in terms of the distance for college and non-college work-
ers. The solid lines represent the fitted Beta distribution used for the model as FNC

n (n) and FC
n (n).

Source: Author’s calculation from ASEC 1968-2019 and O*NET.

Initial distributions of technology I take the initial technology distributions FNC
n (n)

and FC
n (n) as exogenous and infer them directly from the data. Specifically, I fit the

technology distribution at age 18 (23) with Beta distribution for non-college (college)

workers. The advantage of Beta distribution is that it has a limited support [0,1]. After

rescaling, it can be mapped to the interval of technology index [−1,0]. Figure 6 shows

the fitted distributions and the raw distributions from the data.
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4.2 Parameters chosen internally

The rest of the parameters except for the discount factor β are jointly chosen to match (1)

the fraction of college workers, (2) life-cycle profiles of mean earnings, mean distance

and the variance of log earnings for both college and non-college. I denote the set of 24

parameters as Γ

Formally, the parameterization strategy is to minimize the distance between mo-

ments generated by the model and moments from the data. The minimization problem

is described below:

min
Γ

∑
s=NC,C

[
60

∑
j=23

(
(
Am

j,s−Ad
j,s

Ad
j,s

)2 +(
Bm

j,s−Bd
j,s

Bd
j,s

)2 +(
Cm

j,s−Cd
j,s

Cd
j,s

)2

)]
+(

ωs−ωd

ωd )2

where Am
j,s is the mean log earnings of workers at age j from s ∈ {C,NC} educational

group simulated by the model and Ad
j,s is the counterpart from the data. Bm

j,s and Cm
j,s

stand for variance of log earnings and mean distance respectively. ωm is the fraction of

college workers in the model and ωd is the counterpart from the data.

Lastly, I set the discount factor β to match the ratio between median asset and me-

dian labor income. The target ratio is 2.5, which is taken from the Survey of Consumer

Finances (SCF) 2013.12 The discount factor β is chosen to be 0.988 and it generates the

ratio between median asset and median labor income of 2.6 in the model.

Human capital process Human capital levels are discrete and represented by an

evenly spaced ordered set [hmin, ...,hmax]. The lowest level is normalized to 1 and the

highest level is 17.6. I set the number of human capital levels to be 41, which is the

same length as the working stage. The rationale is that it would take the whole working

stage to climb from the lowest level to the highest level since the accumulation of human

capital is stepwise. The rest of the parameters are set to match mean earnings profiles

12Labor income w corresponds to earnings and asset a corresponds to wealth in the SCF .
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and earnings dispersion profiles.

The parameterized values indicate that college workers have a higher baseline prob-

ability of human capital increase. This is in line with the results from the literature on

college attainment where they find the average learning ability is higher among college

workers. As a result, college workers on average accumulate human capital faster than

non-college workers.13 In addition, the parameter that governs human capital decrease

(αdown) is also higher for college workers, which is to match the depreciation near re-

tirement since the depreciation rate is the same across education.

Productivity shocks The size of shocks drawn over the technology distribution in

each period is σz = 0.132 and this applies to both education groups. The parameterized

size of innovation of AR(1) process for college and non-college workers are 0.143 and

0.131 respectively. The persistence parameter for college and non-college workers are

0.95 and 0.92. These values are in the ballpark of the empirical estimation by Guvenen

(2009). In addition, the values suggest that college workers experience larger and more

persistent shocks relative to non-college workers, which is also supported by findings

from Guvenen (2009).

One caveat in interpreting productivity socks is that the realized shocks are the com-

bination of technology decisions and the AR(1) process. As discussed in Section 3.6.1,

one can easily “reset” his productivity by switching to new technology. In fact, the op-

portunity of switching technologies can help workers to avoid a sequence of negative

shocks.14 So the realized sequence of shocks is less persistent than the parameters of

the AR(1) process suggest.

13In Keller (2014) and Kong et al. (2018), the learning ability affects the marginal return to effort in
the human capital production function. People with high learning ability would be sorted into the college
path and they will make more investments during the college stage. As a result, the average learning
ability of college workers is higher.

14This view is close to the literature on occupational mobility, e.g., Dillon (2018) and Liu (2019).
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Catch-up cost The parameters associated with catch-up cost mainly affect technology

upgrading. In particular, the parameters φ0 and φ1 determine how fast workers upgrade

technology over the life-cycle. The parameter φ2 is the key to generate the technology

usage gap between college and non-college workers since the average human capital

level is different across education groups.

Initial distribution The initial distributions of human capital h0 and q are crucial to

pin down the college attainment rate. The distribution of q also affects how college

workers accumulate human capital during the college stage, and generate the variation

in human capital within college workers. Moreover, the college cost q also generates

heterogeneity in human capital within college workers.

4.3 Understanding technology switching

Before showing the model’s performance, I first discuss the mechanism of technology

switching and how it varies by education and age. In Figure 7, I present kernel den-

sity estimation of switching probabilities conditional on workers who switch to other

technologies from the simulated economy.15 For illustration purpose, I only focus on

workers in the 3rd quintile group of the distance (−0.63 < n <−0.53).16

In general, technology switching is asymmetric such that the distribution is left-

skewed, i.e., people are more likely to upgrade technology. The reason is that technol-

ogy upgrade directly delivers a higher utility as it increases earnings and hence con-

sumption. However, the magnitude of upgrade is smaller compared to downgrades.

Figure 7 panel (a) shows that young workers are more likely to upgrade technology

15I compare the moments related to technology switching between the simulated economy and the
data in Appendix D. In general, the model understates the probability of switching relative to the data.
The reason is that workers might switch occupations for non-pecuniary reasons in reality, which are not
captured in my model.

16Though technology switching largely depends on the current technology level, the intuition on
switching can also be applied to other quintile groups.
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Figure 7: Kernel Density of Switching

(a) Technology switching by age (b) Technology switching by education

Note: The figures show kernel density estimations of switching probabilities conditional on workers
who are in the 3rd quintile group of the distance in the previous period and decide to switch to other
technologies. A positive change in distance implies technology upgrading. Panel (a) shows the density
for all workers by age. Panel (b) shows the density for workers at age 25 by education.

compared to old workers. Panel (b) conveys a similar message between college workers

and non-college workers but the difference is relatively small.

To better understand the distribution of technology switching, I investigate the key

equation:

V move
s (a,h,n,Z, j) = max

n′∈[−1,0]
V stay

s (a, h̃(n′,n,h),n′,zn′, j) (29)

This equation governs how far a worker would like to switch (n′) given the vector of

productivity shocks Z. In Figure 8, I plot V stay
s (a, h̃(n′,n,h),n′,zn′, j) as a function of n′

and hold productivity shocks zn′ constant for all n′ ∈ [−1,0] for comparison purpose.

The value function is hump-shaped in n′. The value first increases with n′ since

technology level is positively correlated with earnings. However, two downward forces

stop workers from upgrading. First, technology upgrade leads to the loss in human

capital that is proportional to the distance of switching n′−n as shown in Equation (12).
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Figure 8: Value function V stay(n′)

Note: The figure shows V stay
C (a, h̃(n′,n,h),n′,zn′ , j) as a function of n′ at age 25 with all state variables

evaluated at the median level. I also hold productivity shocks constant for all technologies. The vertical
line stands for current technology position n.

In addition, workers have to pay the catch-up cost φs(n′,h′, j) in the new technology

n′. Moreover, since they suffer human capital loss, it also exacerbates the catch-up cost

as it decreases with h′. These two channels together explain why the value function

decreases with n′ above a certain threshold level. Therefore we see workers prefer a

short step of technology upgrade over a long step in Figure 7.17

4.4 The benchmark economy

In this subsection, I examine the quantitative properties in the benchmark economy and

compare them with the data counterparts. The parameterized model is able to match tar-

geted life-cycle profiles of earnings and technology usage for both educational groups.

In addition, the college attainment rate generated by the model is 29.8%, which is quite

17The actual switching behaviors are more complicated because shocks vary across technologies. One
may switch to a lower-ranked technology because he draws an extremely good shock z for that technology.
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close to the average college attainment rate (29.4%) over the period 1968-2019 in the

CPS sample.

Figure 9: Life-cycle Earnings Profiles

(a) Mean earnings: Non-college (b) Mean earnings: College

(c) Earnings inequality: Non-college (d) Earnings inequality: College

Note: Panel (a) shows the age profile of mean earnings for non-college workers and panel (b) is for
college workers. The mean earnings of non-college workers at age 23 is normalized to 1 for comparison
purposes. Panel (c) shows the age profile of variance of log earnings for non-college workers and panel
(d) is for college workers.

Figure 9 shows that the model is able to match earnings profiles for both college
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Figure 10: Technology Usage Profile

(a) Mean distance: non-college (b) Mean distance: college

Note: Panel (a) shows the age profile of the mean distance for non-college workers and panel (b) shows
the age profile of the mean distance for college workers.

and non-college workers. In particular, non-college workers’ earnings growth over the

life-cycle is 60% while the magnitude of growth is about 150% for college workers.

College workers on average experience steeper earnings growth because they have a

higher baseline probability of human capital increase as shown Table 3. This is the

abstraction that college workers on average have higher learning ability relative to non-

college workers.

Panel (c) and (d) show that the model generates increasing earnings inequality over

the life-cycle for both educational groups. For non-college workers, the growth in life-

cycle inequality is minor. The earnings dispersion profile slightly deviates from the data

for college workers at the beginning of the life-cycle due to the timing of graduation. In

the model, workers who choose the college path will graduate in four years and enter

the labor market at age 23 uniformly. In reality, there is a substantial amount of students

finishing bachelor degrees in more than four years so the timing of entering the labor
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market also varies, which explains the dip in earnings dispersion profile as shown in

the data. Other than that, the model is successful in replicating the growth in life-cycle

inequality.

Figure 10 presents the model’s performance on technology usage. The average dis-

tance profiles for both college and non-college workers are within the 95% confidence

interval from the data. The model generates hump-shaped mean distance profiles for

both college and non-college workers. The intuition is straightforward. At the early

stage of the life-cycle, individuals have the incentive to upgrade technology since they

can enjoy the benefit for the rest of the life-cycle. When approaching the end of the life-

cycle, the cost of technology upgrades outweights the benefit of working with advanced

technologies. Consequently, workers gradually stop climbing up the technology ladder

as shown in Figure 7 panel (a).

Figure 11: Relative share of non-college workers (untargeted)

(a) Data (b) Model

Note: This figure shows the relative share of non-college workers over the technology distribution.
Specifically, I divide the all technologies into 15 bins with equal width and calculate the relative share of
non-college workers in each bin.

Since I did not match the life-cycle profile of technology dispersion (variance of the
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distance), I examine untargeted moments for validation: the relative share of college

workers over the technology distribution. Figure 11 suggests that the model can repli-

cate the joint distribution of technology usage and education. In particular, the relative

share of non-college workers decreases with the technology level. The only unmatched

part is that there are fewer non-college workers at the top of the technology distribution.

The decreasing relative share is mainly driven by the catch-up channel. Equation

(21) suggests that staying at a higher technology position requires more effort and hence

leads to higher disutility. Since this catch-up cost decreases with human capital level, it

implies that college workers on average face smaller cost as their human capital level is

higher. So they are more likely to climb up the technology distribution.

College decisions The college attainment decision is characterized by the combina-

tion of initial human capital h0 and psychic q. Figure 12 shows the college decisions

over the joint initial distribution. It is not surprising that people with higher cost q are

less likely to attend college since it is directly associated with the disutility term dur-

ing the college stage as shown in Equation (17). Moreover, people with low q would

accumulate more human capital.

Given the same level of q, individuals with higher initial human capital are less

likely to attend college. The reason is that the time cost of college education exceeds

the benefit of human capital investments. If one skips the college stage, he directly

enters the labor market and gains earnings based on his initial human capital. If he

decides to attend college, he must forgo four periods of the working stage. Even though

he could accumulate additional human capital during the college stage, it cannot offset

the sacrifice of four periods of earnings.
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Figure 12: College decisions

Note: This figure shows the college decision based on the joint distribution of initial human capital (y-
axis) and cost of college education (x-axis). Blue dots denote people who attend college.

5 Technology and Life-Cycle Earnings

In this section, I first conduct counterfactual experiments to shut down each interaction

channels associated with technology separately and evaluate their effects on life-cycle

earnings. Then I completely remove the choice of technology usage from the model and

quantify its overall impact.

Results show that technology usage accounts for 31% of the growth in mean earn-

ings and 46% of the growth in earnings inequality. Moreover, I find that the model

generates a reinforcement mechanism between technology and human capital which

amplifies earnings growth and earnings inequality over the life-cycle.
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5.1 Catch-up channel

The first experiment is to shut down the catch-up channel by reducing catch-up cost.

Since the entire technology distribution is moving forward, individuals have to pay

catch-up cost φs(n,h, j) (in disutility term) to stay at the same relative position over

time with the functional form

φs(n,h, j) = φ0(1+n)φ1hφ2δ
j−23

s (30)

To reduce the catch-up channel by 50%, I set φ0 to be half of the parameter in Table 3.

φ0 = 0 means completely shutting down the catch-up channel, i.e., the disutility term

associated with technology usage disappears.

Figure 13 panel (a) suggests that reducing the catch-up channel increases earnings

growth over the life-cycle. In particular, as shown in Table 4, the magnitude of earnings

growth increases by 27% after shutting down the catch-up channel. The steeper growth

is mainly driven by the change in technology usage patterns as shown in panel (c).

Without the catch-up cost, workers face fewer barriers when switching to advanced

technologies so they climb up the technology ladder at a faster pace. Consequently, the

mean distance profile keeps increasing over the life-cycle even near retirement. Since

technology level is positively associated with earnings, this leads to steeper earnings

growth over the life-cycle.

Panel (b) in Figure 13 suggests that turning down the catch-up channel greatly re-

duces the growth in life-cycle inequality and the quantitative evaluation is presented

in Table 4. In the benchmark economy, the earnings inequality keeps increasing over

the life-cycle and it is accompanied by a stronger correlation between technology and

human capital as shown in panel (d). This observation confirms the reinforcement mech-

anism discussed in Section 3.6.1 where workers with high human capital are more likely

to work with advanced technologies and vice versa. Therefore the increasing correla-
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Figure 13: Experiments with the Catch-up Channel

(a) Mean earnings (b) Earnings inequality

(c) Mean distance (d) Correlation between technology and HC

Note: The figure presents how life-cycle profiles change when reducing the catch-up channel. To reduce
the catch-up channel by 50%, I set φ0 to be 50% of the original level. φ0 is set to 0 to completely shut
down the catch-up channel. For comparison purpose, the mean earnings at age 23 are normalized to 1 in
all scenarios in panel (a).

tion amplifies the earnings dispersion over the life-cycle through the positive feedback
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Table 4: Life-Cycle Earnings under Counterfactual Experiments

% of college
workers

Mean earnings
growth

Growth in life-cycle
inequality (log points)

Benchmark 29.8 1.84 12.3
Catch-up channel

reduced by 50% 26.2 2.03 7.2
reduced by 100% 17.1 2.11 1.5

Direct channel
reduced by 50% 21.8 1.58 7.4

reduced by 100% 17.8 1.51 5.5
Switching channel

reduced by 100% 30.3 1.81 15.5
Eliminate the initial advantage 22.5 1.85 7.8

Remove technology usage 18.2 1.58 6.6

Note: Column 1 shows the fraction of people attending college in each scenario. Column 2 shows the
aggregate mean earnings growth between age 60 and 23. The last column shows the change in the
variance of log earnings, measured as log points, between age 23 and 60. To reduce the catch-up (direct)
channel by 50%, I set φ0 (η) to be 50% of the original level. φ0 or η is set to 0 to completely shut down
each channel. To remove technology usage, I do not allow workers to switch technologies and shut down
all interaction channels.

loop.18

Reducing the catch-up channel weakens the influence of human capital on technol-

ogy, which undermines the reinforcement mechanism and hence lowers the growth in

earnings inequality. In the benchmark economy, the catch-up cost decreases with hu-

man capital so it is easier to upgrade technology for people with high human capital. So

workers would be more stratified in the technology distribution on the basis of human

capital. Once the catch-up cost is removed, human capital will not facilitate technology

upgrading so there will be more people with low human capital switching to advanced

technologies. Indeed, panel (d) shows that the correlation between technology and hu-

man capital is almost zero when the catch-up channel is reduced by 50%. The correla-

18In Figure E.1, I also show that the changes in life-cycle inequality is not driven by the composi-
tions effect, i.e. the change in the college attainment rate. The life-cycle inequality conditional on each
educational groups decreases when shutting down the catch-up channel.
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tion even becomes negative after shutting down the catch-up channel.19 This suggests

that the amplification mechanism is weakened and therefore the growth in life-cycle

inequality decreases.

College decisions Table 4 shows that the college attainment rate drops 12.7 percent-

age points after shutting down the catch-up channel. To further understand the change

in the attainment rate, Figure 14 compares college decisions between the benchmark

model and the catch-up channel experiment. The black dots denote individuals who

will go to college in the benchmark case (φ0 = 3.1) but decide not to attend college after

shutting down the catch-up channel (φ0 = 0). In general, the threshold levels of cost q

for college education decreases, especially for people with low human capital.

When catch-up cost is eliminated, people value human capital less because it is not

beneficial for technology upgrading as discussed above. As a result, college education

becomes less attractive and the college attainment rate drops.

Moreover, the decline in the threshold level of q becomes larger for people with

low initial human capital. This is because people with high human capital are less

likely to be subject to the catch-up cost when upgrading technologies in the benchmark

economy. On the contrary, people born with low initial human capital are more likely

to be deterred from upgrading because they cannot afford the catch-up cost due to low

human capital. Therefore people with low human capital would like to attend college to

accumulate additional human capital even though their cost q is relatively high.

Once the catch-up cost is eliminated, people with low human capital will face no

barriers of technology upgrading so they can directly enter the labor market and climb

up the technology ladder. Consequently, only people with extremely low cost q would

like to attend college as they can accumulate a huge amount of human capital.

19Due to the switching channel, people with high human capital are less likely to switch since the loss
in human capital is proportional. Therefore it forms a negative correlation between human capital and
technology.
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Figure 14: College Decisions After Shutting Down the Catch-up Channel

Note: Always college stands for people who go to college in both cases. C to NC are people who go to
the college in the benchmark case (φ0 = 3.1) but decide to skip college after shutting down the catch-up
channel (φ0 = 0).

5.2 Direct channel

The direct channel means that earnings function is the product of technology level n and

human capital h as described below

w = exp(z) ·h · γ(η ·n+t) (31)

This functional form explicitly generates a complementarity between human capital and

technology.

The parameter η governs the productivity difference within the technology distri-

bution. To reduce the direct channel by 50%, I set η to be half of the calibrated value,
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which means that the earnings gap between the frontier technology and the least ad-

vanced technology shrinks 50%. Similarly, I shut down the direct channel by setting

η = 0. In this extreme case, all technologies have the same productivity level as the

frontier technology (n = 0). This also implies that technology does not complement

human capital.

Figure 15: Experiments with the Direct Channel

(a) Mean earnings (b) Earnings inequality

Note: The figure presents how life-cycle profiles change when reducing the direct channel. To reduce
the catch-up channel by 50%, I set η to be 50% of the original level. η is set to 0 to completely shut
down the catch-up channel. This implies that all technologies have the same productivity as the frontier
technology. For comparison purpose, the mean earnings at age 23 are normalized to 1 in all scenarios in
panel (a).

One caveat with the experiment of the direct channel is that lowering the parameter

η also increases the level of earnings for people who do not use the frontier technology.

This income effect might affect technology and human capital decisions at the aggregate

level. To control for this possible channel, I multiply earnings function by a factor less

than one such that the mean earnings at age 23 in each counterfactual is the same as the

benchmark economy.

Figure 15 shows that shutting down the direct channel reduces the growth of life-
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cycle inequality and it also flattens the mean earnings profile. Specifically, Table 4

shows that the growth in mean earnings over the life-cycle decreases from 84% to 51%.

Moreover, the growth in life-cycle inequality decreases by 6.8 log points. In Figure E.2,

I also show that the changes in life-cycle earnings profiles at the aggregate level is not

mainly driven by the composition effect.

The intuition of flattened earnings inequality profile is similar to the experiment of

the catch-up channel, i.e., the reduction in η also undermines the reinforcement mech-

anism. Specifically, shutting down the direct channel first eliminates the dispersion

brought by technology usage and then compresses earnings dispersion through the com-

plementarity term. Moreover, it closes the channel from technology to human capital

since the incentive of human capital accumulation will not depend on the technology

level now.

College decisions Figure 16 compares the college decisions between the benchmark

model and the direct channel experiment. The black dots denote individuals who will

go to college in the benchmark case (η = 111) but decide not to attend college after

shutting down the direct channel (η = 0). In general, the threshold levels of initial

human capital and cost q for college education both decreases, which implies college

education is less attractive once technology has less impact on earnings.

The reduction in η affects the value of college education mainly in two aspects.

First, as the data suggested in Figure 6, college workers on average work with better

technologies relative to non-college workers at the beginning of the life-cycle. The

reduction in η weakens this initial advantage in technology because now people have

higher earnings at the lower part of the technology distribution, which directly decreases

the benefit of college education.

Second, since the earnings gap across technologies shrinks, the importance of the

interaction between technology and human capital also decreases. As a result, workers
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Figure 16: College Decisions After Shutting Down the Direct Channel

Note: Always college stands for people who go to college in both cases. C to NC are people who go
to the college in the benchmark case (η = 111) but decide to skip college after shutting down the direct
channel (η = 0).

have less incentive to accumulate human capital so more people would skip the college

stage and enter the labor market directly.

5.3 Switching channel

The last interaction channel is the switching channel, where workers suffer human cap-

ital loss when switching to better technologies as shown in Equation (12). As shown in

Table 4, shutting down switching channel increases the mean earnings growth to 81%

and the growth in life-cycle inequality to 15.5 log points.

Once the switching cost is removed, workers would upgrade technology more fre-

quently so they experience steeper earnings growth over the life-cycle. In addition, the

53



reinforcement mechanism becomes stronger so the life-cycle inequality also increases.

The intuition is the following. Since the loss in human capital is proportional to human

capital, people with high human capital are less likely to make a huge step of technology

upgrading. Once this barrier is removed, they would upgrade technology more inten-

sively so the correlation between technology usage and human capital becomes stronger,

which leads to a higher level of inequality and a steeper growth in life-cycle inequality.

The college attainment rate does not change significantly because the switching cost

is proportional to human capital so it is not in favor of any specific educational groups.

5.4 Initial advantage

The above experiment indicates that technology plays an important role in determining

college decisions. In this subsection, I disentangle the impact of technology on college

decisions and conclude that the initial advantage in technology distribution is the key

determinant. Once this advantage is eliminated, the college attainment rate drops from

29.8% to 22.5%.

The empirical analysis shows that college workers on average work with better tech-

nologies relative to non-college workers even at the beginning of the life-cycle and it is

modeled as the difference in initial technology distributions presented in Figure 6. I

shut down this channel by assuming that college workers also draw initial technology

choices from the same distribution as non-college workers.

The last row in Table 4 shows that the elimination of the initial advantage greatly

reduces the college attainment rate. Because of the composition effect20, the magnitude

of earnings growth decreases and the earnings inequality profile decreases over the life-

cycle at the aggregate level as presented in Figure 17.

Figure 18 shows the change in college decisions over the joint distribution of initial

20From Figure 9, we know that non-college workers have flatter mean earnings profile and earnings
inequality profile.
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Figure 17: Elimination of the Initial Advantage

(a) Mean earnings (b) Earnings inequality

Note: The figure presents life-cycle profiles when both educational groups draw initial technology choice
from the same distribution (as non-college workers). In panel (a), the mean earnings at age 23 is normal-
ized to 1 in the benchmark economy.

conditions. Again, the black dots represent people who go to college in the benchmark

case but decide not to attend college once the initial advantage is eliminated.

The initial advantage largely benefits people born with high levels of human capital

and provides additional incentives for college education for them. In the experiment,

the threshold level of cost q increases for people with higher levels of h0. Since the cost

of college education only depends on the parameter q, this implies that the benefit of

college actually decreases for those people once the initial advantage is eliminated.

On the contrary, the threshold level does not change for workers with low levels of

initial human capital. Put it differently, the initial advantage is not the key determinant

of going to college for them. Instead, the additional human capital accumulation during

the college stage is the main reason.
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Figure 18: College Decisions when Eliminating the Initial Advantage

Note: Always college stands for people who go to college in both cases. C to NC are people who go to
the college in the benchmark case but decide to skip college when the initial advantage is eliminated.

5.5 All together

Lastly, I turn down all interaction channels associated with technology and evaluate how

life-cycle earnings change. In particular, I do not allow workers to switch technologies

and shut down the catch-up cost associated with technology usage. Besides, I shut down

the direct channel by equalizing productivity levels across all technologies such that the

mean earnings at age 23 is the same as the benchmark economy.

The model boils down to a risky human capital investments model where life-cycle

earnings are only determined by endogenous human capital investments (at college and

during the working stage) and idiosyncratic shocks. The difference between life-cycle

earnings profiles can be interpreted as the contribution of technology usage.
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Figure 19: Remove Technology Csage

(a) Mean earnings (b) Earnings inequality

Note: The figure presents life-cycle profiles after removing technology usage from the benchmark model.
The mean earnings at age 23 is normalized to 1 in panel (a) and the level of earning inequality at age 23
is normalized to 0 in panel (b).

As shown in Figure 19 and Table 4, after removing technology usage, the growth

in mean earnings decreases by 26 percentage points (31%). In addition, the growth

in earnings inequality decreases by 5.7 log points (46%) over the life-cycle, which is

larger than the number (38%) obtained from the reduced-form analysis in Section 2.3.

Moreover, the fraction of college workers drops from 29.8% to 18.2%.

One caveat with the final result is that it is not additive because each experiment

might be intertwined with other channels. For example, shutting down the direct channel

also implicitly assumes that the initial advantage is eliminated. In addition, the effect

of the catch-up channel on life-cycle inequality is much larger than the overall impact.

This is because the catch-up experiment does not isolate the effects of the switching

channel, which in turn increases the growth in life-cycle inequality.
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6 Policy Analysis: Non-linear Taxation

In this section, I evaluate the effects of non-linear taxation on life-cycle earnings. In

particular, I replace the proportional tax on labor earnings in the benchmark economy

with a progressive tax. That is, the marginal tax rate and the average tax rate of labor

earnings increases with labor earnings. I reparameterize the model with the progressiv-

ity level in the U.S. to match the moments as discussed in Section 4.2, and then explore

how different levels of progressivity affect life-cycle earnings.21

The policy experiments show that a progressive tax reduces the college attainment

rate, and lowers mean earnings and earnings growth over the life-cycle. However,

the effects on life-cycle inequality are relatively small, which is contrary to the recent

view in the literature that progressive taxation compresses the wage structure and hence

decreases earnings inequality, like Erosa and Koreshkova (2007) and Guvenen et al.

(2014). The reason is that a progressive tax has second-order effects on technology

usage through the catch-up channel, which instead strengthens the reinforcement mech-

anism. As a result, it leads to a slight increase in earnings inequality, which partially

offsets the reduction in earnings inequality brought by a compressed wage structure.

6.1 Progressive tax system

In the baseline model, individuals’ labor earnings and capital income are taxed at a flat

rate τ . I now replace the proportional tax rate on labor earnings with progressive taxes

and leave the tax rate on capital income unchanged.

I borrow the progressive tax system pioneered by Feldstein (1969) and later popu-

larized by Benabou (2002). In particular, the average tax rate on labor earnings is given

by

τ(w) = 1−λ (w/w̄)−τp (32)

21The quantitative analysis in Section 5 is robust under the progressive tax at the U.S. level.
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where w̄ is the mean labor earnings in the economy. The average tax rate of the individ-

ual with mean labor earnings is 1−λ . This tax rate increases with labor earnings w in a

concave pattern since τp > 0.

The parameter λ controls for the level of the tax rate and the parameter τp stands for

the progressivity in the tax schedule. In the case of τp = 0, the average tax rate will not

depend on labor income, i.e., it boils down to the standard proportional tax.

6.2 Tax progressivity and earnings over the life-cycle

I conduct policy experiments to explore how progressivity affects earnings over the life-

cycle. The results in Table 5 indicate that a more progressive tax system leads to a lower

college attainment rate and a smaller earnings growth over the life-cycle. However, the

effects on life-cycle inequality are relatively small compared to the literature.

Table 5: How Progressivity Affects Life-Cycle Earnings

% of college
workers

Mean earnings
growth

Growth in life-cycle
inequality (log points)

Progressivity tax
τp = 0.05 (Benchmark) 29.8 1.84 12.3

τp = 0.10 25.9 1.74 12.0
τp = 0.15 22.5 1.65 11.5

Proportional tax: τp = 0 33.3 1.91 12.5

Note: This table presents how earnings change with respect to the progressivity (τp) of the tax schedule.
The benchmark model is parameterized with τp = 0.05. Column 1 shows the fraction of people attending
college in each scenario. Column 2 shows the mean earnings growth from age 23 to 60 at the aggregate
level. The last column shows the change in the variance of log earnings, measured as log points, between
age 23 and 60. Total taxes collected by the government are constant in each scenario.

Recall that the parameter τp in Equation (32) governs the progressivity of the non-

linear tax system. A higher τp means the tax system is more progressive. In the follow-

ing counterfactual analysis, I fix the total amount of taxes collected by the government

by adjusting the tax rate λ accordingly. The benchmark economy is reparameterized to
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the progressivity level in the U.S. (τp = 0.05) following the estimation from Guner et al.

(2014), who use data on federal tax returns in 2000.22

I consider three counterfactual scenarios of progressivity as shown in Table 5. The

first scenario is τp = 0.10, a number estimated by Heathcote et al. (2020) where they

additionally include federal government transfers alongside taxes. The second scenario

with τp = 0.15 stands for the level of progressivity in European countries, like U.K. or

Germany.23 Lastly, I evaluate the effects when the economy switches from a progressive

tax to a proportional tax (τp = 0).

6.2.1 Earnings growth

Figure 20 panel (a) shows that the mean earnings profile becomes flatter as the tax

system becomes more progressive. This result is consistent with the common view in

the literature that progressive taxes distort the incentive to accumulate human capital.24

Since the marginal tax rate increases with earnings, the marginal benefit of human capi-

tal investments decreases as a larger fraction of income would be taxed. So it suppresses

the human capital accumulation over the life-cycle. This is confirmed by the observation

in panel (b) where the mean human capital profile becomes flatter with more progressive

taxes.

In addition to human capital, the progressive taxes also suppress the incentive of

technology upgrading, and intuition is the same as the argument for human capital accu-

mulation. Panel (c) suggests that the mean distance profile shifts downward when taxes

become more progressive, which implies that people on average use less advanced tech-

nologies over the life-cycle. In particular, the average distance drops more than -0.05 at

age 60 when switching from τp = 0.05 to τp = 0.15. The magnitude is equivalent to 0.4

22I only change the parameters related to the catch-up cost, human capital probabilities and the initial
distribution of h0 and q.

23See Heathcote et al. (2020) table 2 for details.
24See Guvenen et al. (2014), Krueger and Ludwig (2016), and Badel et al. (2020) for example.
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Figure 20: Earnings Profiles under Progressive Taxes

(a) Mean earnings

(b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.

61



times of the standard deviation of the distance at age 23. Since earnings are a function

of human capital and technology, panel (b) and (c) in Figure 20 together imply a flatter

growth in life-cycle earnings if the tax system becomes more progressive.

One potential reason behind the flattening of earnings profile is the composition

effect, i.e., the decline in the college attainment rate. Since non-college workers have a

flatter mean earnings profile, the drop in the college attainment rate naturally leads to

a flatter earnings profile at the aggregate level. To rule out this possibility, I also look

at the life-cycle profiles for both college and non-college workers respectively and the

results show that the progressive taxes do disincentivize human capital accumulation

and technology upgrading for both educational groups.

As presented in Figure E.3 and Figure E.4 panel (a), the growth in life-cycle earnings

decreases with the progressivity for both educational groups. Panel (b) and (c) show that

workers have less incentive to accumulate human capital and upgrade technology when

facing a more progressive tax regardless of education. Therefore, the flattening of the

earnings profile is not solely driven by the change in the college attainment rate.

Table 6: How Progressivity Affects Aggregate Earnings

Mean labor earnings Mean income

Progressive tax
τp = 0.05 (Benchmark) 100 100

τp = 0.10 97.0 97.6
τp = 0.15 94.0 95.2

Proportional tax: τp = 0 102.8 102.1

Note: This table presents how mean labor earnings and mean income (labor earnings and return on capital)
change with respect to the progressivity (τp) of the tax schedule under the tax neutrality condition. I
normalize the mean labor earnings and mean income to 100 in the benchmark economy. Total taxes
collected by the government are fixed in each scenario.

Table 6 shows that a progressive tax also reduces mean labor earnings and income

in the economy. In particular, the mean labor earnings drops 6% when the economy

switches to a progressive tax at European levels (τp = 0.15). The decline in mean in-
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come is around 5%, which is smaller than the change in labor earnings. The reason

is that the progressive tax is on labor earnings but not on the return to savings so the

incentive of saving is not distorted. In addition, the mean labor earnings increases 2.8%

if the economy switches to a proportional tax given the total amount of taxes fixed.

6.2.2 Earnings inequality

The last column in Table 5 suggests that the growth in earnings inequality is also af-

fected by a more progressive tax but the magnitude is smaller. This result is contrary

to the recent findings in the literature that progressive taxes compress wage structure

and hence lower earnings inequality like in Guvenen et al. (2014) or Badel et al. (2020).

In particular, Esfahani (2020) finds that increasing the progressivity parameter τp from

0.13 to 0.17 reduces the growth in life-cycle inequality around 30% whereas my results

suggest the decline is less than 5%.

Table 7: Change in technology usage by human capital quintile

HC quantile
Average distance over the life-cycle
τp = 0.05 τp = 0.15 change

1 -0.66 -0.71 -0.05
2 -0.55 -0.62 -0.07
3 -0.53 -0.58 -0.05
4 -0.52 -0.55 -0.03
5 -0.50 -0.53 -0.03

Note: This table presents the average distance over the life-cycle by human capital quintile. I divide all
workers into five groups based on the level of human capital at age 60 and calculate the average distance
from age 23 to 60 in the benchmark economy and under the progressive tax (τp = 0.15). The last column
shows the change in the average distance, i.e. the difference between the second and the third column.

Why earnings inequality is not critically affected by the progressive tax? The answer

is that the reinforcement mechanism that generates increasing earnings inequality is not

changed by a progressive tax. In fact, the correlation between technology and human

capital even becomes stronger when the tax system is more progressive. Specifically,
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the average correlation between human capital and technology over the life-cycle is 0.28

when τp = 0.05 and it increases to 0.34 when τp = 0.15. Indeed, the wage structure is

compressed by progressive taxes as earnings profiles become flatter. The progressive

tax also strengthens the positive correlation between human capital and technology,

which in turn increases the level of inequality. Overall, the first force (compressed wage

structure) slightly outweighs the second force (stronger correlation) so the reduction in

earnings inequality is not significant.

The reason behind the stronger correlation is that the progressive tax has asymmetric

effects on technology usage through the catch-up channel. In particular, a progressive

tax depresses technology upgrading and the effects are stronger for workers with low

human capital. In Table 7, I present the average distance over the life-cycle by human

capital level. Specifically, I divide workers into five groups based on the level of human

capital at age 60. The last column documents the changes in the distance when switching

from the benchmark economy to the progressive tax. For the first human capital quintile

group, the decline in the average distance is 0.05 whereas the change in the last human

capital quintile is −0.03. In short, the drop in the distance is larger for people with

low human capital. Put it differently, the progressive tax is in favor of workers with

high human capital in terms of technology usage. As a result, workers would be more

stratified in the technology distribution on the basis of human capital so the correlation

becomes stronger.

This asymmetric effect is driven by the fact that the catch-up cost is a decreasing

and convex function of human capital as shown in Equation (21) with the calibrated

parameter φ2 = −1.3. As the progressive tax suppresses human capital accumulation,

it also increases the catch-up cost of technology usage. Since the cost is convex and

decreasing in human capital, the increase in the cost is larger for people with low human

capital, which makes it much harder to upgrade technology relative to people with high

human capital. Therefore we see workers from the first two quintile groups experience
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a larger technology downgrade when switching to a progressive tax.

6.2.3 College decisions

The progressive tax also suppresses the incentive to attend college as shown in the first

column of Table 5. The college attainment rate drops from 29.8% to 22.5% when τp

increases to 0.15. This result is also qualitatively consistent with findings from Esfahani

(2020). In short, the progressive tax discourages human capital accumulation, which

also includes investments during the college stage.

Figure 21: College Decisions under Progressive Taxes

Note: The figure shows college decisions conditional on the combination of college cost q and initial
human capital h0. I consider a tax reform where the economy switches from a U.S. progressivity level
(τp = 0.05) to a European level (τp = 0.15). Always college means people who go to college in both
cases. C to NC are people who go to college when tax is proportional but decide to skip the college stage
when a tax on labor earnings is progressive.
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To better understand the patterns in college attainment, I present the change in col-

lege decisions over the joint initial distributions when the economy switches to a pro-

gressive tax at European level (τp = 0.15) in Figure 21. The black dots denote workers

who would go to college when the progressive tax is at the U.S. level but decide to skip

the college stage when the progressive increases to the European level.

As shown in Figure 21, the threshold level of cost q for college education decreases

after the tax becomes more progressive. The reason is the following. A progressive

tax distorts the incentive of human capital accumulation even during the college stage,

which further lowers the value of the college stage. Since the cost of education only

depends on the cost parameter q, given the same initial human capital condition h0,

one needs a lower initial condition on cost q to attend college. Put differently, a more

progressive tax makes college education less profitable from the life-cycle view so the

fraction of college attainment rate declines.

7 Final Remarks

In this paper, I thoroughly quantify the contribution of technology to earnings through

the lens of a life-cycle model with a college decision, endogenous technology usage, and

human capital investments. The novelty of the model is to allow for rich interactions

between human capital and technology. In particular, human capital facilitates technol-

ogy upgrading through the catch-up channel. The direct channel makes human capital

accumulation investments contingent on technology as it leads to the complementarity

between these two factors in earnings. Moreover, the switching channel captures the

barrier to technology upgrading in terms of the loss of human capital.

My model suggests that technology usage accounts for 31% of the growth in mean

earnings and 46% of the growth in earnings inequality over the life-cycle. Furthermore,

counterfactual experiments suggest that both catch-up channel and direct channel are
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crucial in generating increasing earnings inequality over the life-cycle. Specifically,

these two channels build up a reinforcement mechanism between technology and human

capital where workers with high human capital are more likely to work with advanced

technologies and vice versa. The interaction between these two terms amplifies the

earnings dispersion over the life-cycle.

Furthermore, a progressive tax on labor earnings has relatively small effects on life-

cycle inequality, which is contrary to the recent findings from the literature. Though

the progressive tax schedule compresses the wage structure by distorting the incentive

to accumulate human capital, it also slightly strengthens the reinforcement mechanism

between technology and human capital, which offsets the reduction in life-cycle in-

equality.
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A The Construction of the Distance to the Frontier

I use a combination of inputs from the O*NET data set to construct the index to mea-

sure technology usage at the individual level. The O*NET data set provides detailed

information on the importance of knowledge, tasks and skills for each occupation. In

particular, a random sample of workers chooses the description that best fits their daily

work in one specific aspect (for example programming skills). The answers are on a

scale from 1 (“not important”) to 6 (“extremely important”). The index of importance

for that occupation is the average responses from the sample of workers.

I extract indices of the following characteristics: knowledge about computers and

electronics, activities interacting with computers, programming skills, systems eval-

uation skills, quality control analysis skills, operations analysis skills, activities with

updating and using relevant knowledge, technology design skills, activities analyzing

data and information, activities processing information, knowledge with engineering

and technology, and activities managing material resources.

I sum all the values from the above characteristics and normalize the sum to the

interval [−1,0]. The normalized index is denoted as the distance to the frontier. By

construction, it measures how intensively workers use information technology at their

daily work. The occupation that uses information technology most intensively is con-

sidered to be the frontier technology and its distance to the frontier is 0.

B Stationary Equilibrium

Definition: A stationary equilibrium is a collection of college decision s(h0,q) and

joint initial distribution Λ(h0,q), individual choice {c j(Θ),a j(Θ),n j(Θ),e j(Θ)}JR
j=23 at

the working stage with state Θ = (a,n,h,z;s), individual choice {a j(a j−1,s)}J
j=JR+1

at the retirement stage, government policies {τss,bss
C ,b

ss
NC,τ,G} and the sequence of
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population shares {µ j}J
j=23 such that:

1. Individuals’ decisions solve the optimization problems discussed in Section 3.

2. Government budget constraint is balanced:

J

∑
j=23

µ j

∫
E[T (w j(Θ),a j(Θ))]dΛ = G

3. The social security budget is balanced:

τss

JR

∑
j=23

µ j

∫
E[w j(Θ)]dΛ =

J

∑
j=JR+1

µ j[ωbss
C +(1−ω)bss

NC]

where ω =
∫
1{s(h0,q) =C}dΛ is the fraction of college workers.
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C Details on Technology Usage Patterns

C.1 Technology percentiles profiles

I construct the age profile of technology usage at different percentiles using the same

statistical method in Equation (1). The only difference is that the dependent variable

yi,c,t is the n-th percentile of technology usage from cohort c of age j at time t.

Figure C.1: Technology Profiles by Percentiles

(a) Non-college workers (b) College workers

Source: Author’s calculation from CPS ASEC 1968-2019 and O*NET.

Figure C.1 shows the age profiles of technology usage at different percentiles. There

are two things worth mentioning. First, the level of technology percentiles varies sig-

nificantly by education. For example, the 90th percentile of technology usage for non-

college workers is similar to the 50th percentile for college workers. This observation

also confirms that there is a huge variation in technology usage by education.

Second, all age profiles are relatively flat over the life-cycle, which indicates that

technology distribution conditional on education is relatively stable. However, one
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should not interpret that technology usage behavior at the individual level is stable as

well because this figure is not informative about switching behaviors. Specifically, a

worker in the 90th percentile of technology level at age 25 could switch to the 10th

percentile at age 55.

C.2 Decomposition of technology usage variation

Figure 4 shows that more than one-third of the growth in earnings inequality can be

explained by the variation in technology usage. In this section, I decompose this part and

quantify what is the fraction of variation that comes from between-education variation.

In Figure C.2, I show the comparisons conditional on education. Panel (a) shows that

technology usage accounts for roughly 75% of the growth in earnings inequality for

non-college workers while panel (b) shows that the effect is relatively small for college

workers.

Figure C.2: Life-cycle Earnings Inequality by Education

(a) Non-college workers (b) College workers

Note: The figure shows the age profile of variance of log earnings estimated from Equation (1) conditional
on education. The solid line represents the raw earnings lnwi,t and the dotted line represents the residual-
ized earnings ln w̃i,t as described in Equation (5), which excludes the part explained by technology. Both
levels are normalized to 0 at age 23 for comparison purpose.
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I further conduct an ANOVA analysis on technology usage and find 85% of the

variation in technology usage at age 60 comes from within-education variation. As

discussed above, the variation in technology usage explains 38% of the growth in earn-

ings inequality, and 85% of this growth is accounted for by variation conditional on

college/non-college workers.

D Technology Switching Moments

I utilize the panel property of the ASEC data set to construct moments related to switch-

ing probabilities and compare them with the simulated model. I define “staying” as the

absolute change in the distance is less than 0.02, which is the minimum step that one

can move in the model. Any change that exceeds 0.02 is considered to be a technology

upgrade and the definition of a downgrade is similar.

One potential issue in this exercise is the inconsistency in the time period. The

CPS outgoing rotation group (ORG), which allows me to keep track of workers over

time, starts in 1977. However, my analysis of technology usage takes information from

1968. Therefore it not is guaranteed that a well-parameterized model could match the

switching moments well.

Indeed, as shown in Figure D.1, my model overstates the probability of staying

relative to the data as shown in panel (a) and (d). For instance, at age 60, around 90% of

college workers stay with the same technology in the model while this fraction is only

70% in the data. Also, the model understates the probability of downgrading as shown

in panel (c) and (f).
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Figure D.1: Age profiles of the probabilities of switching/staying

(a) Stay: Non-college (b) Upgrade: Non-college (c) Downgrade: Non-college

(d) Stay: College (e) Upgrade: College (f) Downgrade: College

Note: I plot the age profiles of the fractions of workers choose technology upgrade and downgrade.
Technology upgrade is defined as the change in the distance greater than 0.02. Similarly, technology
downgrade is defined as the change in the distance less than -0.02.
Source: Author’s calculation from CPS ASEC/ORG 1978-2019 and O*NET.

E Life-cycle Profiles Conditional on Educational Group

In this part I present the life-cycle earnings profiles in the counterfactual experiments

conditional on educational group. In Figure E.1, I present the conditional life-cycle

earnings profiles when shutting down the catch-up channel. The mean earnings growth

increases for educational groups and the life-cycle inequality decreseas for both edu-

cational groups. Therefore the change at the aggregate level is not only driven by the

compositional effect.
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However, the change in mean earnings for college workers is not monotone in the

sense that the mean growth is larger when the catch-up cost is reduced by 50%. When

there is not catch-up cost, college workers will upgrade technology more frequently so

they suffer more human capital loss. So the growth in mean earnings slightly declines

but the absolute level of earnings increases.

Similarly, Figure E.2 shows the conditional life-cycle earnings profiles when shut-

ting down the direct channel. The mean earnings growth and life-cycle inequality both

decreases for each educational group, which also indicates that the change at the aggre-

gate level is not only driven by the compositional effect.

Figure E.3 and Figure E.4 show the conditional life-cycle earnings profiles under

taxation experiment. A more progressive depresses mean earnings growth and distorts

the incentive for human capital accumulation and technology upgrading for both college

and non-college workers.
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Figure E.1: Experiments with the Catch-up Channel

(a) Mean earnings: non-college (b) Mean earnings: college

(c) Earnings dispersion: non-college (d) Earnings dispersion: college
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Figure E.2: Experiments with the Direct Channel

(a) Mean earnings: non-college (b) Mean earnings: college

(c) Earnings dispersion: non-college (d) Earnings dispersion: college
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Figure E.3: Earnings profiles under progressive taxes (non-college workers)

(a) Mean earnings (b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.

Figure E.4: Earnings profiles under progressive taxes (college workers)

(a) Mean earnings (b) Mean human capital (c) Mean distance

Note: Panel (a) shows the average earnings profile over the life-cycle and panel (b) shows the average
human capital profile. Both values at age 23 are normalized to 1 when τp = 0.05. Panel (c) presents the
mean distance profile, i.e., the average technology usage profile. A higher τp implies a more progressive
tax schedule.
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